
Parallel Performance

Concurrency and Parallelism — 2016-17
Master in Computer Science

(Mestrado Integrado em Eng. Informática)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Joao Lourenço <joao.lourenco@fct.unl.pt>

Source:	Parallel	Computing,	CIS	410/510,	Department	of	Computer	and	Information	Science

Outline

• Performance scalability
– Analytical performance measures
– Amdahl’s law
– Gustafson-Barsis’ law
– Work-span and Brent’s lemma

– Bibliography:
• Chapter 2 of book

McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Sep	27,	2017 2Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

What is Performance?

• In computing, performance is defined by 2 factors
– Computational requirements (what needs to be done?)
– Computing resources (how much will it cost?)

• Computational problems translate to requirements

• Computing resources interplay and tradeoff

Sep	27,	2017 3

Time Energy

…	and	ultimately

MoneyHardware

Performance ~
1

Resources for solution

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Why do we care about
Performance?
• Performance itself is a measure of how well the computational

requirements can be satisfied

• We evaluate performance to understand the relationships between
requirements and resources
– Decide how to change “solutions” to target objectives

• Performance measures reflect decisions about how and how well
“solutions” are able to satisfy the computational requirements

“The most constant difficulty in contriving the
engine has arisen from the desire to reduce the
time in which the calculations were executed to
the shortest which is possible.”

Charles Babbage, 1791 – 1871

Sep	27,	2017 4Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

What is Parallel Performance?

• Here we are concerned with performance issues
when using a parallel computing environment
– Performance with respect to parallel computation

• Performance is the raison d’être for parallelism
– Parallel performance versus sequential performance
– If the “performance” is not better, parallelism is not necessary

• Parallel processing includes techniques and
technologies necessary to compute in parallel
– Hardware, networks, operating systems, parallel libraries,

languages, compilers, algorithms, tools, …

• Parallelism must deliver performance
– How? How well?

Sep	27,	2017 5Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Performance Expectation (Loss)

• If each processor is rated at x MFLOPS and there are
p processors, should we see x*p MFLOPS
performance?
– If it takes 100 seconds on 1 processor, shouldn’t it take 10

seconds on 10 processors?

• Several causes affect performance
– Each must be understood separately
– But they interact with each other in complex ways

• Solution to one problem may create another
• One problem may mask another

• Scaling (system, problem size) can change
conditions
• Need to understand performance space
Sep	27,	2017 6Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Embarrassingly Parallel
Computations
• An embarrassingly parallel computation is one that

can be obviously divided into completely
independent parts that can be executed
simultaneously
– In a truly embarrassingly parallel computation there is no

interaction between separate processes
– In a nearly embarrassingly parallel computation results must be

distributed and collected/combined in some way

• Embarrassingly parallel computations have potential
to achieve maximal speedup on parallel platforms
– If it takes T time sequentially, there is the potential to achieve T/P

time running in parallel with P processors
– Why is this not always the case?

Sep	27,	2017 7Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Scalability

• A program can scale up to use many processors
– What does that mean?

• How do you evaluate scalability?
• How do you evaluate scalability goodness?
• Comparative evaluation

– If double the number of processors, what to expect?
– Is scalability linear?

• Use parallel efficiency measure
– Is efficiency retained as problem size increases?

• Apply performance metrics

Sep	27,	2017 8Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Performance and Scalability

• Evaluation
– Sequential runtime (Tseq or T1) is a function of

• problem size and architecture
– Parallel runtime (Tpar) is a function of

• problem size and parallel architecture
• # processors used in the execution

– Parallel performance is affected by
• algorithm + architecture

• Scalability
– Ability of parallel algorithm to achieve performance gains

proportional to the number of processors and the size of
the problem

Sep	27,	2017 9Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Performance Metrics and
Formulas
• T1 is the execution time on a single processor
• Tp is the execution time on a p processor system

• Sp is the speedup

• Ep is the efficiency

• Cp is the cost

• A parallel algorithm is cost-optimal if
– ∑ Parallel time = sequential time (Cp = T1 , Ep = 100%)

Sep	27,	2017 10

S(p)	= T1
Tp

E(p)	= Sp
p

Cost(p)	=	p ´ Tp

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Amdahl’s Law
(Fixed Size Speedup)
• Interested in solving the problem faster

• Reduce execution time

Sep	27,	2017 11

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP 
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP  1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Serial	Work	is	≈16%	
of	execution	time

Amdahl’s Law
(Fixed Size Speedup)
• Interested in solving the problem faster

• Reduce execution time

Sep	27,	2017 12

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP 
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP  1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Serial	Work	is	≈25%	
of	execution	time

Amdahl’s Law
(Fixed Size Speedup)
• Interested in solving the problem faster

• Reduce execution time

Sep	27,	2017 13

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP 
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP  1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Serial	Work	is	≈40%	
of	execution	time

Amdahl’s Law
(Fixed Size Speedup)
• Interested in solving the problem faster

• Reduce execution time

Sep	27,	2017 14

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP 
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP  1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Serial	Work	is	≈60%	
of	execution	time

Amdahl’s Law
(Fixed Size Speedup)
• Let f be the fraction of a program that is sequential

– 1-f is the fraction that can be parallelized

• Let T1 be the execution time on 1 processor
• Let Tp be the execution time on p processors
• Sp is the speedup

Sep	27,	2017 15

Sp =
T1

Tp
=

T1

fT1 +
(1�f)T1

p

Sp =
1

f + (1�f)
p

Sp 1 =
1

f
Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

≤

≤

≤

Amdahl’s Law
(Fixed Size Speedup)
• Amdhal’s Law:

Maximal Speedup

Sep	27,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 16

• Amdahl’s Law:
Efficiency

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 60 — #60

60 CHAPTER 2 Background

Now consider what happens when P tends to infinity:

S1  1
f

. (2.5)

Speedup is limited by the fraction of the work that is not parallelizable, even using an infinite number
of processors. If 10% of the application cannot be parallelized, then the maximum speedup is 10⇥.
If 1% of the application cannot be parallelized, then the maximum speedup is 100⇥. In practice, an
infinite number of processors is not available. With fewer processors, the speedup may be reduced,
which gives an upper bound on the speedup. Amdahl’s Law is graphed in Figure 2.5, which shows the
bound for various values of f and P. For example, observe that even with f = 0.001 (that is, only 0.1%
of the application is serial) and P = 2048, a program’s speedup is limited to 672⇥. This limitation on
speedup can also be viewed as inefficient use of parallel hardware resources for large serial fractions,
as shown in Figure 2.6.

2.5.5 Gustafson-Barsis’ Law
. . . speedup should be measured by scaling the problem to the number of processors, not by fixing the
problem size.

(John Gustafson [Gus88])

Amdahl’s Law views programs as fixed and the computer as changeable, but experience indicates
that as computers get new capabilities, applications change to exploit these features. Most of today’s

672Serial
fraction

3

2

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of workers

Speedup

0.1%

1%

10%

30%

50%

FIGURE 2.5

Amdahl’s Law: speedup. The scalability of parallelization is limited by the non-parallelizable (serial) portion of
the workload. The serial fraction is the percentage of code that is not parallelized.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 61 — #61

2.5 Performance Theory 61

100%

80%

60%

40%

20%

0%
1 2 4 8 16 32 64

Number of workers

Serial
fraction

0.1%

1%

10%

30%

50%

128 256 512 1024 2048

Efficiency

FIGURE 2.6

Amdahl’s Law: efficiency. Even when speedups are possible, the efficiency can easily become poor. The serial
fraction is the percentage of code that is not parallelized.

applications would not run on computers from 10 years ago, and many would run poorly on machines
that are just 5 years old. This observation is not limited to obvious applications such as games; it
applies also to office applications, web browsers, photography software, DVD production and editing
software, and Google Earth.

More than two decades after the appearance of Amdahl’s Law, John Gustafson2 noted that several
programs at Sandia National Labs were speeding up by over 1000⇥. Clearly, Amdahl’s Law could be
evaded.

Gustafson noted that problem sizes grow as computers become more powerful. As the problem
size grows, the work required for the parallel part of the problem frequently grows much faster than
the serial part. If this is true for a given application, then as the problem size grows the serial fraction
decreases and speedup improves.

Figure 2.7 visualizes this using the assumption that the serial portion is constant while the parallel
portion grows linearly with the problem size. On the left is the application running with one worker. As
workers are added, the application solves bigger problems in the same time, not the same problem in
less time. The serial portion still takes the same amount of time to perform, but diminishes as a fraction
of the whole. Once the serial portion becomes insignificant, speedup grows practically at the same rate
as the number of processors, thus achieving linear speedup.

2His paper gives credit to E. Barsis, hence we call it Gustafson-Barsis’ Law. It is sometimes called just Gustafson’s Law.

Amdahl’s Law
(Fixed Size Speedup)
• Amdhal’s Law:

Maximal Speedup

Sep	27,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 17

• Amdahl’s Law:
Efficiency

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 60 — #60

60 CHAPTER 2 Background

Now consider what happens when P tends to infinity:

S1  1
f

. (2.5)

Speedup is limited by the fraction of the work that is not parallelizable, even using an infinite number
of processors. If 10% of the application cannot be parallelized, then the maximum speedup is 10⇥.
If 1% of the application cannot be parallelized, then the maximum speedup is 100⇥. In practice, an
infinite number of processors is not available. With fewer processors, the speedup may be reduced,
which gives an upper bound on the speedup. Amdahl’s Law is graphed in Figure 2.5, which shows the
bound for various values of f and P. For example, observe that even with f = 0.001 (that is, only 0.1%
of the application is serial) and P = 2048, a program’s speedup is limited to 672⇥. This limitation on
speedup can also be viewed as inefficient use of parallel hardware resources for large serial fractions,
as shown in Figure 2.6.

2.5.5 Gustafson-Barsis’ Law
. . . speedup should be measured by scaling the problem to the number of processors, not by fixing the
problem size.

(John Gustafson [Gus88])

Amdahl’s Law views programs as fixed and the computer as changeable, but experience indicates
that as computers get new capabilities, applications change to exploit these features. Most of today’s

672Serial
fraction

3

2

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of workers

Speedup

0.1%

1%

10%

30%

50%

FIGURE 2.5

Amdahl’s Law: speedup. The scalability of parallelization is limited by the non-parallelizable (serial) portion of
the workload. The serial fraction is the percentage of code that is not parallelized.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 61 — #61

2.5 Performance Theory 61

100%

80%

60%

40%

20%

0%
1 2 4 8 16 32 64

Number of workers

Serial
fraction

0.1%

1%

10%

30%

50%

128 256 512 1024 2048

Efficiency

FIGURE 2.6

Amdahl’s Law: efficiency. Even when speedups are possible, the efficiency can easily become poor. The serial
fraction is the percentage of code that is not parallelized.

applications would not run on computers from 10 years ago, and many would run poorly on machines
that are just 5 years old. This observation is not limited to obvious applications such as games; it
applies also to office applications, web browsers, photography software, DVD production and editing
software, and Google Earth.

More than two decades after the appearance of Amdahl’s Law, John Gustafson2 noted that several
programs at Sandia National Labs were speeding up by over 1000⇥. Clearly, Amdahl’s Law could be
evaded.

Gustafson noted that problem sizes grow as computers become more powerful. As the problem
size grows, the work required for the parallel part of the problem frequently grows much faster than
the serial part. If this is true for a given application, then as the problem size grows the serial fraction
decreases and speedup improves.

Figure 2.7 visualizes this using the assumption that the serial portion is constant while the parallel
portion grows linearly with the problem size. On the left is the application running with one worker. As
workers are added, the application solves bigger problems in the same time, not the same problem in
less time. The serial portion still takes the same amount of time to perform, but diminishes as a fraction
of the whole. Once the serial portion becomes insignificant, speedup grows practically at the same rate
as the number of processors, thus achieving linear speedup.

2His paper gives credit to E. Barsis, hence we call it Gustafson-Barsis’ Law. It is sometimes called just Gustafson’s Law.

Amdahl’s Law (Exmple)

• If 90% of the computation can be parallelized,
what is the max. speedup achievable using
8 processors?

• Solution:

f = 10% = 0.1

S(8) ≤

Sep	27,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 18

Example 1

If 90% of the computation can be parallelized,
what is the max. speedup achievable using 8
processors?
Solution:
 𝑓 = 10%,

 Ψ 𝑛, 𝑝 ≤ 1
0.1+1−0.18

≈ 4.7

8

Amdahl’s Law and Scalability

• Scalability
– Ability of parallel algorithm to achieve performance gains

proportional to the number of processors and the size of the
problem

• When does Amdahl’s Law apply?
– When the problem size is fixed
– Strong scaling (p®∞, Sp = S∞® 1 / f)
– Speedup bound is determined by the degree of sequential

execution time in the computation, not # processors!!!
– Uhh, this is not good … Why?
– Perfect efficiency is hard to achieve

• See original paper by Amdahl at
– http://inst.eecs.berkeley.edu/~n252/sp07/Papers/Amdahl.pdf

Sep	27,	2017 19Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Gustafson-Barsis’ Law
(Scaled Speedup)
…speedup should be measured by scaling the
problem to the number of processors, not by fixing
the problem size.

— John Gustafson

Sep	27,	2017 20Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Gustafson-Barsis’ Law
(Scaled Speedup)
• Often interested in larger problems when scaling

– How big of a problem can be run (HPC Linpack)
– Constrain problem size by parallel time

Sep	27,	2017 21

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Gustafson-Barsis’ Law
(Scaled Speedup)
• Often interested in larger problems when scaling

– How big of a problem can be run (HPC Linpack)
– Constrain problem size by parallel time

Sep	27,	2017 22

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Gustafson-Barsis’ Law
(Scaled Speedup)
• Often interested in larger problems when scaling

– How big of a problem can be run (HPC Linpack)
– Constrain problem size by parallel time

Sep	27,	2017 23

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Gustafson-Barsis’ Law
(Scaled Speedup)
• Often interested in larger problems when scaling

– How big of a problem can be run (HPC Linpack)
– Constrain problem size by parallel time

Sep	27,	2017 24

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Gustafson-Barsis’ Law
(Scaled Speedup)
• Execution time of a parallel program: T1=a+b

– a => part not parallelizable
– b => part parallelizable

• Because we are scaling the problem (data
being processed), with P processors we have:
TP = a + P· b
• The wall clock execution time is always the

same, so scaled speedup is calculated on the
volume of data processed (which is proportional
to the total/accumulated execution time):
S = Tp / T1 = (a + P· b) / (a + b)

Sep	27,	2017 25Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Gustafson-Barsis’ Law
(Scaled Speedup)
• Scaled speedup S = Tp / T1 = (a + P· b) / (a + b)

• Let α = a / (a+b) be the sequential fraction of
the parallel execution time

• Then the scaled speedup is

S(P) ≤ α + P · (1-α) = P – α · (P-1)

• If αà 0 then S(P) à P

Sep	27,	2017 26Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Gustafson-Barsis’ Law (Example)

• An application executing on 64 processors uses
5% of the total time on non-parallelizable
computations. What is the scaled speedup?

• Solution:

S(64) ≤ P – α · (P-1)

≤ 64 – 0.05 (64-1)

≤ 60.85

Sep	27,	2017 27Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Gustafson-Barsis’ Law and
Scalability
• Scalability

– Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of
the problem

• When does Gustafson’s Law apply?
– When the problem size can increase when the number of

processors increases
– Speedup function includes the number of processors!!!
– Can maintain or increase parallel efficiency as the

problem scales

Sep	27,	2017 28Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Amdahl versus Gustafson-Baris

Sep	27,	2017 29Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

DAG Model of Computation

• Think of a program as a directed acyclic graph
(DAG) of tasks
– A task can not execute until all the

inputs to the tasks are available
– These come from outputs of earlier

executing tasks
– DAG shows explicitly the task dependencies

• Think of the hardware as consisting
of workers (processors)
• Consider a greedy scheduler of

the DAG tasks to workers
– No worker is idle while there

are tasks still to execute

Sep	27,	2017 30Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Work-Span Model

• TP = time to run with P workers
• T1 = work

– Time for serial execution
• execution of all tasks by 1 worker

– Sum of all work

• T∞ = span
– Time along the critical path

• Critical path
– Sequence of task execution (path) through DAG that takes

the longest time to execute
– Assumes an infinite # workers available

Sep	27,	2017 31Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Work-Span Example

• DAG at the right has 7 tasks

• Let each task take 1 unit of time

• T1 = 7
– All tasks have to be executed
– Tasks are executed in a serial order
– Can them execute in any order?

Sep	27,	2017 32Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

1

5

4
2

3

6

7

Work-Span Example

• DAG at the right has 7 tasks

• Let each task take 1 unit of time

• T1 = 7
– All tasks have to be executed
– Tasks are executed in a serial order
– Can them execute in any order?

• T∞ = 5
– Time along the critical path
– In this case, it is the longest pathlength of

any task order that maintains necessary dependencies
Sep	27,	2017 33Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

1

2

2
2

3

4

5

Lower/Upper Bound on Greedy
Scheduling
• Suppose we only have P workers
• We can write a work-span formula

to derive a lower bound on TP
– Max(T1 / P , T∞) ≤ TP

• T∞ is the best possible execution time
• Brent’s Lemma derives an upper bound

– Capture the additional cost executing
the other tasks not on the critical path

– Assume can do so without overhead
– TP ≤ (T1 - T∞) / P + T∞

Sep	27,	2017 34Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Consider Brent’s Lemma for 2
Processors
• T1 = 7

• T∞ = 5

• T2 ≤ (T1 - T∞) / P + T∞
≤ (7 – 5) / 2 + 5

≤ 6

Sep	27,	2017 35Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Consider Brent’s Lemma for 2
Processors
• T1 = 7

• T∞ = 5

• T2 ≤ (T1 - T∞) / P + T∞
≤ (7 – 5) / 2 + 5

≤ 6

Sep	27,	2017 36Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

1

2 2

3

4

5

6

Can we do better?
Yes!!

Consider Brent’s Lemma for 2
Processors
• T1 = 7

• T∞ = 5

• T2 ≤ (T1 - T∞) / P + T∞
≤ (7 – 5) / 2 + 5

≤ 6

Sep	27,	2017 37Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

1

2

23

3

4

5

Can we do better?
No!!

Amdahl was an optimist!

Sep	27,	2017 38Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Estimating Running Time

• Scalability requires that T∞ be dominated by T1

TP ≈ T1 / P + T∞ if T∞ << T1

• Increasing work hurts parallel execution
proportionately

• The span impacts scalability, even for finite P

Sep	27,	2017 39

TP		≤	(T1 - T∞)	/	P	+	T∞

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Parallel Slack

• Sufficient parallelism implies linear speedup

Sep	27,	2017 40Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

TP		≈	T1/P				if				T1/T∞>>P

Linear speedup Parallel stack

The END

Sep	27,	2017 41Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

