) informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Parallel Performance

Concurrency and Parallelism — 2016-17
Master in Computer Science
(Mestrado Intfegrado em Eng. Informatica)

Joao Lourencgo <joao.lourenco@fct.unl.pt>

Source: Parallel Computing, CIS 410/510, Department of Computer and Information Science

Outline

» Performance scalabillity
— Analytical performance measures
— Amdahl’ s law
— Gustafson-Barsis’ law
— Work-span and Brent's lemma

— Biblio arap h Y. Structured Parallel

Programming

« Chapter 2 of book
McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18 2

What is Performance?

* In computing, performance is defined by 2 factors
— Computational requirements (what needs to be done?)
— Computing resources (how much will it coste)

« Computational problems translate to requirements

« Computing resources interplay and tradeoff
1

Resources for solution

T\ / @ . y %? ... and ultimately I@J

Performance ~

Hardware Time Energy Money

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

Why do we care about
Performancee

« Performance itself is a measure of how well the computational
requirements can be satisfied

« We evaluate performance to understand the relationships between
requirements and resources
— Decide how to change “solutions” to target objectives

« Performance measures reflect decisions about how and how well
“solutions” are able to saftisfy the computational requirements

“The most constfant difficulty in contriving the
engine has arisen from the desire to reduce the
time in which the calculations were executed fo
the shortest which is possible.”

Charles Babbage, 1791 - 1871

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18 4

What is Parallel Performance®?

» Here we are concerned with performance issues
when using a parallel computing environment
— Performance with respect to parallel computation

» Performance is the raison d’'éfre for parallelism

— Parallel performance versus sequential performance
— If the “performance’” is not better, parallelism is not necessary

* Parallel processing includes techniques and
technologies necessary to compute in parallel

— Hardware, networks, operating systems, parallel libraries,
languages, compilers, algorithms, tools, ...

» Parallelism must deliver performance
— Howe How welle

Performance Expectation (Loss)

o |f each processor is rated at x MFLOPS and there are
p processors, should we see x*o MFLOPS
performancee

— If it takes 100 seconds on 1 processor, shouldn’t it take 10
seconds on 10 processorse

« Several causes affect performance
— Each must be understood separately
— But they intferact with each other in complex ways
« Solution to one problem may create another
« One problem may mask another

» Scaling (system, problem size) can change
conditions

 Need to understand performance space

Embarrassingly Parallel
Computations

 An embarrassingly parallel computation is one that
can be obviously divided into completely
Independent parts that can be executed
simultaneously
— In a truly embarrassingly parallel computation there is no
inferaction between separate processes

— In a nearly embarrassingly parallel computation results must be
distributed and collected/combined in some way

 Embarrassingly parallel computations have potential

to achieve maximal speedup on parallel platforms
— If it takes T time sequentially, there is the potential to achieve T/P
time running in parallel with P processors

— Why is this not always the case?

Scalabllity

e A program cadn scale Uup o use many pProcessors
— What does that mean@e

 How do you evaluate scalabilitye
 How do you evaluate scalability goodness?

« Comparative evaluation

— If double the number of processors, what to expect?
— Is scalability lineare

« Use pardallel efficiency measure
— s efficiency retained as problem size increasese

* Apply performance metrics

Performance and Scalabllity

« Evaluation

— Sequential runtime (Tseq Or T;) is a function of
« problem size and architecture

— Parallel runtfime (T,q,) is a function of
« problem size and parallel architecture
« # processors used in the execution

— Parallel performance is affected by
« algorithm + architecture

» Scalability

— Ability of parallel algorithm to achieve performance gains
proportional to the number of processors and the size of
the problem

Performance Metrics and
Formulas

* T, is the execution fime on a single processor
* T, is the execution fime on a p processor system

-
» S, is the speedup Slp) = =
p
* E, is the efficiency E(p) = z_
« C, Is the cost Cost(p) =p x T,

» A parallel algorithm is cosf-optimal it
— 2 Parallel fime = sequential time (C, =T, , E, = 100%)

Amdahl’ s Law
(Fixed Size Speedup)

* Interested in solving the problem faster

e Reduce execution time

P=1

. Serial Work is =16%
Serial work))
of execution time

Parallelizable work

awi|

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

11

Amdahl’ s Law
(Fixed Size Speedup)

* Interested in solving the problem faster

e Reduce execution time

P=1 P=2
. Serial Work is =25%
Serial work

of execution time
Parallelizable work II

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

awli |

12

Amdahl’ s Law
(Fixed Size Speedup)

* Interested in solving the problem faster

e Reduce execution time

Serial work l

Parallelizable work

P=4

Serial Work is =40%
of execution time

swl]

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

13

Amdahl’ s Law
(Fixed Size Speedup)

* Interested in solving the problem faster

e Reduce execution time

Serial work l

Parallelizable work

P=4 P=8

Serial Work is =60%
of execution time

swl]

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18 14

Amdahl’ s Law
(Fixed Size Speedup)

* Let f be the fraction of a program that is sequential
— I-fis the fraction that can be parallelized

« Let T, be the execution time on 1 processor
* Let T, be the execution time on p processors

* S, Isthe speedup -
18.00 ///
S T1 . T]_ 16.00 /,// Pallle;;;nlon —_
p S T T (1—f)T1 14.00 / E;g::
p le _|_ T 12.00 /1‘ o
S 1 :Exo.oo // ///
i RN
P 4.00 ///
Sp«»—)oo S ? 200 1"

Sep 27, 2017 Concurrency and Parallelism — J. Lourengo@FCT—UNL2017-18" ~7T R RS ® 8 58

Number of Processors

Amdahl’ s Law
(Fixed Size Speedup)

« Amdhal’s Law:
Maximal Speedup

1000
Serial Speedup 672
fraction
X 0.1%
* 1%
10% 100
30%
< 50%
- 10
3
L
T T T 1

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of workers

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

16

Amdahl’ s Law
(Fixed Size Speedup)

« Amdhal’s Law: « Amdahl’s Law:

Sep 27,2017

Number of workers

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

Number of workers

1000 —0 100%
Serial Speedup 672 Efficiency
fraction
* 0.1% 80%
- 1%
10% 100
30% 60%
< 50%
Serial
fraction 40%
- 10 - 0.1% \-
1%
3 ~-10% 20%
l 2 30%
~-50%
T T T T T T T T 1 T T T T T T T T Y % S 0%
12 16 32 64 128 256 512 1024 2048 1 2 4 8 16 32 64 128 256 512 1024 2048

17

Amdahl’ s Law (Exmple)

« If 90% of the computation can be parallelized,
what is the max. speedup achievable using
38 Processorse

« Solution:

f=10% = 0.1

S(8) < ——=g7 ~ 4.7

0.1+ 3

Amdahl’s Law and Scalabillity

« Scalability

— Ability of parallel algorithm to achieve performance gains
proglor’rionol to the number of processors and the size of the
problem

« When does Amdahl’s Law applye
— When the problem size is fixed
— Strong scaling (p—=, Sp =S — 1 /1)

— Speedup bound is determined by the degree of sequential
execution time in the computation, not # processors!!!

— Uhh, this is not good ... Why?
— Perfect efficiency is hard to achieve

» See original paper by Amdahl| af
— http://inst.eecs.berkeley.edu/~n252/sp07/Papers/Amdahl.pdf

Gustafson-Barsis’ Law
(Scaled Speedup)

...speedup should be measured by scaling the
problem to the number of processors, not by fixing
the problem size.

— John Gustafson

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel time

P=1
Serial work l

Parallelizable work

awil|

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18 21

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested in larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel time

P=1 P=2

Serial work

Parallelizable work II

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18 22

awl |

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested In larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel time

P=1 P=2 P-4

Serial work

Parallelizable work II IIII

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18 23

awl |

Gustafson-Barsis’ Law
(Scaled Speedup)

« Often interested In larger problems when scaling
— How big of a problem can be run (HPC Linpack)
— Constrain problem size by parallel time

P1P2 P4 P=8

Serial work

ParaezabeworkI II IIII IIIIIIII

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

awl |

Gustafson-Barsis’ Law
(Scaled Speedup)

« Execution time of a parallel program: T,=a+b
— a => part not parallelizable
— b => part parallelizable

* Because we are scaling the problem (data
being processed), with P processors we have:
Tr=a+P-D

» The wall clock execution time is always the
same, so scaled speedup is calculated on the
volume of data processed (which is proportional
to the total/accumulated execution fime):
S=T,/Ty,=(a+P-b)/(a+Db)

Gustafson-Barsis’ Law
(Scaled Speedup)

 Scaled speedupS=T,/T,=(a+P-b)/(a+Db)

*let aa=a/ (atb) be the sequential fraction of
the parallel execution time

* Then the scaled speedup is
S(P)=sa +P -(1-A)=P-0 - (P-1)

elf >0 then S(P) > P

Gustafson-Barsis’ Law (Example)

* An application executing on 64 processors Uses
5% of the total fime on non-parallelizable
computations. What is the scaled speedup@

» Solution:
S(64) <P-a - (P-1)
< 64 -0.05 (64-1)
< 60.85

Gustafson-Barsis’ Law and
Scalabllity

» Scalabillity
— Abillity of parallel algorithm to achieve performance gains

proportional to the number of processors and the size of
the problem

» When does Gustafson's Law applye

— When the problem size can increase when the number of
Processors increases
— Speedup function includes the number of processors!!!

— Can maintain or increase parallel efficiency as the
problem scales

Amdahl versus Gustafson-Baris

Gustafson-Baris
=4

2 P=4 P=8 P=1 P=2 P P=8
I serial work
parallelizable work

Amdahl

P=1 P
serial work
parallelizable work

1

Wl

awiL

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

DAG Model of Computation

* Think of a program as a directed acyclic graph
(DAG) of tasks

— A task can not execute until all the
inputs to the tasks are available

— These come from oufpufts of earlier
executing tasks

— DAG shows explicitly the task dependencies

 Think of the hardware as consisting
of workers (processors)

« Consider a greedy scheduler of
the DAG tasks to workers

— No worker is idle while there
are tasks still to execute

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

30

Work-Span Model

* To = time to run with P workers

* T, = WOrK
— Time for serial execution
« execution of all tasks by 1 worker

— Sum of all work

e [, =Sspan
— Time along the critical path

 Critical path

— Sequence of task execution (path) through DAG that takes
the longest time to execute

— Assumes an infinite # workers available

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18 31

Work-Span Example

« DAG at the right has 7 tasks
e Let each task take 1 unit of time
° TI — 7

— All tasks have to be executed

— Tasks are executed in a serial order
— Can them execute in any ordere

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

32

Work-Span Example

« DAG at the right has 7 tasks
e Let each task take 1 unit of time
° TI — 7

— All tasks have to be executed

— Tasks are executed in a serial order
— Can them execute in any ordere

o Too =5
— Time along the critical path

—In this case, it is the longest pathlength of
any task order that maintains necessary dependencies

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18 33

Lower/Upper Bound on Greedy
Scheduling

« Suppose we only have P workers

 We can write a work-span formula
to derive a lower bound on T,

* T, IS the best possible execution time

* Brent's Lemma derives an upper bound

— Capture the additional cost executing
the other tasks not on the critical path ®

— Assume can do so without overhead

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

Consider Brent's Lemma for 2
Processors

e T,=7

¢T.=5

T, <(T)-T.)/P+T,
<(/7-5)/2+5
<6

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

Consider Brent's Lemma for 2
Processors

'T]:7
.Too:5
pi pi
T, S(T)-T.)/P+T. o
S(7=5)12+5 Can we do better?
<é Yesl!

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18 36

Consider Brent's Lemma for 2
Processors

'T]:7
.Too:5
3 pi
T, S(T)-T.)/P+T. aa
S(7=5)12+5 Can we do better?
<é Noll

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18 37

Amdahl was an optimist!

_— —Amdahl's Law

o5
= /
9 2

o

/)] ,

—Work-Span Bound

Brent's Lemma

Sep 27, 2017 Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

<

38

Estimating Running Time

 Scalabillity requires that T,, be dominated by T,
Tos(T,-T..)/P+T..

Te=T,/P+T, If T,<<T,

 Increasing work hurts parallel execution
proportionately

* The span impacts scalabllity, even ftor finite P

Parallel Slack

 Sufficient parallelism implies linear speedup
. D

T, =T,/P if T,/T_>>P
(&

)

\) \)
| 1

Linear speedup Parallel stack

The END

Sep 27, 2017

Concurrency and Parallelism — J. Lourenco © FCT-UNL 2017-18

41

